Asymmetric changes in cutaneous reflexes after a partial spinal lesion and retention following spinalization during locomotion in the cat.
نویسندگان
چکیده
Locomotion involves dynamic interactions between the spinal cord, supraspinal signals, and peripheral sensory inputs. After incomplete spinal cord injury (SCI), interactions are disrupted, and remnant structures must optimize function to maximize locomotion. We investigated if cutaneous reflexes are altered following a unilateral partial spinal lesion and whether changes are retained within spinal circuits after complete spinal transection (i.e., spinalization). Four cats were chronically implanted with recording and stimulating electrodes. Cutaneous reflexes were evoked with cuff electrodes placed around left and right superficial peroneal nerves. Control data, consisting of hindlimb kinematics and electromyography (bursts of muscular activity and cutaneous reflexes), were recorded during treadmill locomotion. After stable control data were achieved (53-67 days), a partial spinal lesion was made at the 10th or 11th thoracic segment (T(10)-T(11)) on the left side. Cats were trained to walk after the partial lesion, and following a recovery period (64-80 days), a spinalization was made at T(13). After the partial lesion, changes in short-latency excitatory (P1) homologous responses between hindlimbs, evoked during swing, were largely asymmetric in direction relative to control values, whereas changes in longer-latency excitatory (P2) and crossed responses were largely symmetric in direction. After spinalization, cats could display hindlimb locomotion within 1 day. Early after spinalization, reflex changes persisted a few days, but over time homologous P1 responses increased symmetrically toward or above control levels. Therefore changes in cutaneous reflexes after the partial lesion and retention following spinalization indicate an important spinal plasticity after incomplete SCI.
منابع مشابه
Partial denervation of ankle extensors prior to spinalization in cats impacts the expression of locomotion and the phasic modulation of reflexes.
Following peripheral nerve sections some locomotor deficits appear which are gradually compensated for by spinal and supraspinal mechanisms. The present work is aimed at identifying contributions of both types of mechanisms. We performed a denervation of the left lateral gastrocnemius-soleus (LGS) muscles in three cats which was followed by a spinalization at the 13th thoracic segment. Three ot...
متن کاملContribution of cutaneous inputs from the hindpaw to the control of locomotion. II. Spinal cats.
The goal of these experiments was to define the contribution of hindpaw cutaneous inputs in the expression of spinal locomotion in cats. In 3 cats, some (n = 1) or all (n = 2) cutaneous nerves were cut bilaterally at ankle level before spinalization. This denervation caused small deficits that were gradually compensated as reported in the companion study. After spinalization, the completely den...
متن کاملDual spinal lesion paradigm in the cat: evolution of the kinematic locomotor pattern.
The recovery of voluntary quadrupedal locomotion after an incomplete spinal cord injury can involve different levels of the CNS, including the spinal locomotor circuitry. The latter conclusion was reached using a dual spinal lesion paradigm in which a low thoracic partial spinal lesion is followed, several weeks later, by a complete spinal transection (i.e., spinalization). In this dual spinal ...
متن کاملProminent role of the spinal central pattern generator in the recovery of locomotion after partial spinal cord injuries.
The re-expression of hindlimb locomotion after complete spinal cord injuries (SCIs) is caused by the presence of a spinal central pattern generator (CPG) for locomotion. After partial SCI, however, the role of this spinal CPG in the recovery of hindlimb locomotion in the cat remains mostly unknown. In the present work, we devised a dual-lesion paradigm to determine its possible contribution aft...
متن کاملRecovery of hindlimb locomotion after incomplete spinal cord injury in the cat involves spontaneous compensatory changes within the spinal locomotor circuitry.
After incomplete spinal cord injury (SCI), compensatory changes occur throughout the whole neuraxis, including the spinal cord below the lesion, as suggested by previous experiments using a dual SCI paradigm. Indeed, cats submitted to a lateral spinal hemisection at T10-T11 and trained on a treadmill for 3-14 wk re-expressed bilateral hindlimb locomotion as soon as 24 h after spinalization, a p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 102 5 شماره
صفحات -
تاریخ انتشار 2009